Electrostatically Shielded Transportation Enabling Accelerated Na+ Diffusivity in High‐Performance Fluorophosphate Cathode for Sodium‐Ion Batteries

Author:

Wang Jinjin1,Jing Hongbo1,Wang Xiaomei1,Xue Yaqing1,Liang Qinghua2,Qi Weihong1,Yu Hong1ORCID,Du Cheng‐Feng1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

2. Key Laboratory of Rare Earth Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou Jiangxi 341000 P. R. China

Abstract

AbstractA typical polyanionic based material Na3V2(PO4)2O2F (Na3VPO2F) attracts much interest as a cathode for large‐scale sodium‐ion batteries in consideration of its stable structure and remarkable energy density. Nevertheless, the large coulombic attraction and repulsion suffered by the mobile Na+ from structural anions and surrounding Na+, respectively, result in a torpid reaction kinetics and inferior rate capability. Herein, Br‐doped and Na+ vacancy preinstalled Na3−yVPO2−xBrxF is prepared to dilute the charges on and inside the Na+ transportation tunnel. In virtue of density functional theory analysis, Na3−yVPO2−xBrxF reveals a reduction in the bandgap and an increase in electronic conductivity. Meanwhile, the almost electrostatically shielded tunnel in Na3−yVPO2−xBrxF alleviates the coulombic hindrance imposed on Na+ during its (de)intercalation, which demonstrates a Na+ diffusivity about five times higher than that of Na3VPO2F. Consequently, the Na3−yVPO2−xBrxF cathode shows a superior rate capacity of 77.7 mAh g−1 under 50 C and great cycling property corresponding to a high capacity retention of 94.4% over 800 cycles at 10 C. The assembled Na3−yVPO2−xBrxF//hard‐carbon sodium‐ion full‐cell presents excellent specific energy/power (226 Wh kg1@15424.2 W kg−1) as well as outstanding long‐term cyclic stability over 1000 cycles at 5 C.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3