Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping

Author:

Wagner Laura I.12ORCID,Sirotti Elise12,Brune Oliver12,Grötzner Gabriel12,Eichhorn Johanna12ORCID,Santra Saswati12ORCID,Munnik Frans3ORCID,Olivi Luca4ORCID,Pollastri Simone45ORCID,Streibel Verena12ORCID,Sharp Ian D.12ORCID

Affiliation:

1. Walter Schottky Institut Technische Universität München 85748 Garching Germany

2. Physics Department TUM School of Natural Sciences Technische Universität München 85748 Garching Germany

3. Institute of Ion Beam Physics and Materials Research Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) 01328 Dresden Germany

4. Elettra–Sincrotrone Trieste S.C.p.A. SS 14–km 163,5, Basovizza Trieste 34149 Italy

5. Department of Physics, Computer Science and Mathematics University of Modena and Reggio Emilia Via Campi 103 Modena 41125 Italy

Abstract

AbstractWhile Ta3N5 shows excellent potential as a semiconductor photoanode for solar water splitting, its performance is hindered by poor charge carrier transport and trapping due to native defects that introduce electronic states deep within its bandgap. Here, it is demonstrated that controlled Ti doping of Ta3N5 can dramatically reduce the concentration of deep‐level defects and enhance its photoelectrochemical performance, yielding a sevenfold increase in photocurrent density and a 300 mV cathodic shift in photocurrent onset potential compared to undoped material. Comprehensive characterization reveals that Ti4+ ions substitute Ta5+ lattice sites, thereby introducing compensating acceptor states, reducing the concentrations of deleterious nitrogen vacancies and reducing Ta3+ states, and thereby suppressing trapping and recombination. Owing to the similar ionic radii of Ti4+ and Ta5+, substitutional doping does not introduce lattice strain or significantly affect the underlying electronic structure of the host semiconductor. Furthermore, Ti can be incorporated without increasing the oxygen donor content, thereby enabling the electrical conductivity to be tuned by over seven orders of magnitude. Thus, Ti doping of Ta3N5 provides a powerful basis for precisely engineering its optoelectronic characteristics and to substantially improve its functional characteristics as an advanced photoelectrode for solar fuels applications.

Funder

European Research Council

Bayerische Akademie der Wissenschaften

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3