Affiliation:
1. Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
Abstract
AbstractStructured piezoresistive membranes are compelling building blocks for wearable bioelectronics. However, the poor structural compressibility of conventional microstructures leads to rapid saturation of detection range and low sensitivity of piezoresistive devices, limiting their commercial applications. Herein, a bioinspired MXene‐based piezoresistive device is reported, which can effectively boost the sensitivity while broadening the response range by architecting intermittent villus‐like microstructures. Benefitting from the two‐stage amplification effect of this intermittent architecture, the developed MXene‐based piezoresistive bioelectronics exhibit a high sensitivity of 461 kPa−1 and a broad pressure detection range of up to 311 kPa, which are about 20 and 5 times higher than that of the homogeneous microstructures, respectively. Cooperating with the deep‐learning algorithm, the designed bioelectronics can effectively capture complex human movements and precisely identify human motion with a high recognition accuracy of 99%. Evidently, this intermittent architecture of biomimetic strategy may pave a promising avenue to overcome the limitation of rapid saturation and low sensitivity in piezoresistive bioelectronics, and provide a general way to promote its large‐scale applications.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献