Highly Selective Nano‐Interface Engineering in Multishelled Nanocubes for Enhanced Broadband Electromagnetic Attenuation

Author:

Zhang Huibin12,Zhou Xiaodi2,Yuan Mingyue2,Xiong Xuhui1,Lv Xiaowei2,Liu Yihao2,Lv Hualiang3,Lai Yuxiang4,Zhang Jincang5,Zhang Huiran1,Pan Deng1,Che Renchao25ORCID

Affiliation:

1. Materials Genome Institute Shanghai University Shanghai 200444 P. R. China

2. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China

3. Institute of Optoelectronics Fudan University Shanghai 200433 P. R. China

4. Pico Electron Microscopy Center Innovation Institute for Ocean Materials Characterization Center for Advanced Studies in Precision Instruments Hainan University Haikou Hainan 570228 P. R. China

5. Zhejiang Laboratory Hangzhou 311100 P. R. China

Abstract

AbstractWithin the nanoscale, methodically reconfiguring interface charges, and leveraging this newly structured interface to modify the energy‐momentum dynamics of heterojunction energy bands, hold profound implications for microwave electronics because of the intensified interaction between external microwaves and interfaces of materials. Mastering the orderly reconstruction of interface charges, contingent upon precise control over composition, orientation, and electronic structure remains a challenge at this scale. Herein, an in situ hierarchical assembly approach is used to successively deposit layers of Cu2S, C, and MoS2 on a hollow cubic framework with a thickness of 20 nm. Additionally, by harnessing the quasi‐graphitic characteristics and elevated work function of graphitized carbon in the middle layer, its inherent charge is steered toward both the outer and inner layers, establishing a structured configuration for the crafted Cu2S@C and C@MoS2 interfaces. Employing advanced off‐axis electron holography, microwave dielectric measurements, and first‐principle calculations, the dynamic reconstruction of interface charges and the resulting microwave response is ascertained. The synergistic effect revealed that the Cu2S@C@MoS2 materials exhibited exceptional microwave absorption, with an effective absorption band covering 7.03 GHz at 2.0 mm thickness. Furthermore, the orderly reconstruction of nano‐interfaces paves the way for research into novel electromagnetic protection materials and their unique electronic behaviors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3