Large Annular Dipoles Bounded between Single‐Atom Co and Co Cluster for Clarifying Electromagnetic Wave Absorbing Mechanism

Author:

Liu Hu1,Li Xueqian1,Zhao Xiaoying1,Zhang Min2,Liu Xinhua3,Yang Shichun3,Wu Hongjing4ORCID,Ma Zhenhui2

Affiliation:

1. School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 China

2. Department of Physics Beijing Technology and Business University Beijing 100048 China

3. School of Transportation Science and Engineering Beihang University Beijing 100191 China

4. MOE Key Laboratory of Material Physics and Chemistry under Extraordinary School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710072 China

Abstract

AbstractIt is very challenging to demonstrate the intrinsic feature and absorption mechanism for electromagnetic (EM) wave absorber since dipole polarization loss is always discussed together with magnetic loss, conductive loss, defects/interfacial polarization, and so on. To address this issue, here, a kind of atomic composites is reported, including single‐atom Co and Co cluster with controllable atom dipole to tune the polarization and establish the link between dipole polarization and the EM wave absorption. Using a chemical synthesis route, the atomic composites are fabricated, including Co single‐atom (SA) sites and cluster (Cs) on nitrogen‐doped graphitic carbon (Co1+Cs/NGC). Due to the special design, the effect of magnetic loss, conductive loss, and interfacial polarization on EM wave dissipation can be ignored so that it can only highlight dielectric loss caused by dipole polarization. And, by controlling the Co atoms concentration, it can tune the valence state of Co atoms between 0 to +2 to control dipole polarization and relaxation. As a result, the Co1+Cs/NGC‐2 with Co concentration of 6.0 wt% exhibits optimized dipole moments and thus excellent absorption performance (the reflection loss exceeds −54.3 dB, and the effective absorption bandwidth with RL ≤−10 dB reaches 7.0 GHz at 2.0 mm) due to the effective dipole polarization caused by the large annular dipole bounded between Co SA sites and Co Cs. This study proposes a simplified model to clarify EM wave absorption mechanism from atom view.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3