Bandwidth Control and Symmetry Breaking in a Mott‐Hubbard Correlated Metal

Author:

Shoham Lishai1,Baskin Maria1,Tiwald Tom2,Ankonina Guy1,Han Myung‐Geun3,Zakharova Anna4,Caspi Shaked1,Joseph Shay5,Zhu Yimei3,Inoue Isao H.6,Piamonteze Cinthia4,Rozenberg Marcelo J.7,Kornblum Lior1ORCID

Affiliation:

1. Andrew and Erna Viterbi Department of Electrical and Computer Engineering Technion – Israel Institute of Technology Haifa 3200003 Israel

2. J. A. Woollam Co., Inc. 645 M Street, Suite 102 Lincoln NE 68508 USA

3. Condensed Matter Physics and Materials Science Brookhaven National Laboratory Upton NY 11793 USA

4. Swiss Light Source Paul Scherrer Institute Villigen PSI CH‐5232 Switzerland

5. Rafael Ltd. P.O. box 2250 Haifa 3102102 Israel

6. National Institute of Advanced Industrial Science and Technology (AIST) Central 5 Tsukuba 305–8565 Japan

7. Université Paris‐Saclay CNRS Laboratorie de Physique des Solides Orsay 91405 France

Abstract

AbstractIn Mott materials strong electron correlation yields a spectrum of complex electronic structures. Recent synthesis advancements open realistic opportunities for harnessing Mott physics to design transformative devices. However, a major bottleneck in realizing such devices remains the lack of control over the electron correlation strength. This stems from the complexity of the electronic structure, which often veils the basic mechanisms underlying the correlation strength. This study presents control of the correlation strength by tuning the degree of orbital overlap using picometer‐scale lattice engineering. This study illustrates how bandwidth control and concurrent symmetry breaking can govern the electronic structure of a correlated SrVO3 model system. This study shows how tensile and compressive biaxial strain oppositely affect the SrVO3 in‐plane and out‐of‐plane orbital occupancy, resulting in the partial alleviation of the orbital degeneracy. The spectral weight redistribution under strain is derived and explained, which illustrates how high tensile strain drives the system toward a Mott insulating state. Implementation of such concepts can push correlated electron phenomena closer toward new solid‐state devices and circuits. These findings therefore pave the way for understanding and controlling electron correlation in a broad range of functional materials, driving this powerful resource for novel electronics closer toward practical realization.

Funder

Nancy and Stephen Grand Technion Energy Program

Brookhaven National Laboratory

Basic Energy Sciences

U.S. Department of Energy

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3