Strong Tough Ionic Organohydrogels with Negative‐Thermopower via the Synergy of Coordination Interaction and Hofmeister Effect

Author:

Hu Qiaoman12,Li Huan1,Chen Xiaoling2,Wang Yang2,Wu Hong1ORCID,Guo Shaoyun1,Xu Kangming2

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu 610065 China

2. College of Materials Science and Engineering Chongqing University of Arts and Sciences Chongqing 402160 China

Abstract

AbstractIonic thermoelectric (i‐TE) gels have attracted widespread attention in flexible electronics due to their flexibility, leakage‐free, low toxicity, and converting low‐grade waste heat into electricity. For practical application, it is strongly desirable to fabricate negative‐thermopower (n‐type) i‐TE gels with excellent mechanical performances, which is still a big challenge. Herein, a multi‐hierarchical network structure is proposed to simultaneously improve the TE and mechanical performance. Such structure including hierarchical hydrogen bonds, coordination bonds, and dense polymer chains is realized via the synergy of the coordination effect of polymer to cations and the Hofmeister effect of anions to polymer. As a result, the optimized gel exhibits not only negative thermopower up to −3.69 mV K−1 with a conductivity of 0.15 S m−1 at room temperature, but also outstanding tensile strength (>6.7 MPa), elongation at break (>1100%), and toughness (>43 MJ m−3), which is the toughest n‐type i‐TE gel reported to date. In addition, these n‐type i‐TE gels present good freeze tolerance (−58.53 °C) and dry resistance. Furthermore, the application potentials of the i‐TE device are proven in converting human thermal power into electricity. These findings provide a new way to obtain high‐performance n‐type i‐TE materials by synergistic anion and cation action on polymers.

Funder

National Natural Science Foundation of China

Chongqing Municipal Education Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3