Affiliation:
1. Centre for Future Materials University of Southern Queensland Springfield Central Queensland 4300 Australia
2. School of Chemistry and Physics Queensland University of Technology Brisbane QLD 4000 Australia
Abstract
AbstractAs an extended member of the thermoelectric family, ionic thermoelectrics (i‐TEs) exhibit exceptional Seebeck coefficients and applicable power factors, and as a result have triggered intensive interest as a promising energy conversion technique to harvest and exploit low‐grade waste heat (<130 °C). The last decade has witnessed great progress in i‐TE materials and devices; however, there are ongoing disputes about the inherent fundamentals and working mechanisms of i‐TEs, and a comprehensive overview of this field is required urgently. In this review, the prominent i‐TE effects, which set the ground for i‐TE materials, or more precisely, thermo‐electrochemical systems, are first elaborated. Then, TE performance, capacitance capability, and mechanical properties of such system‐based i‐TE materials, followed by a critical discussion on how to manipulate these factors toward a higher figure‐of‐merit, are examined. After that, the prevalent molding methods for assembling i‐TE materials into applicable devices are summarized. To conclude, several evaluation criteria for i‐TE devices are proposed to quantitatively illustrate the promise of practical applications. It is therefore clarified that, if the recent trend of developing i‐TEs can continue, the waste heat recycling landscape will be significantly altered.
Funder
Australian Research Council
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献