An Ultra-Durable Windmill-Like Hybrid Nanogenerator for Steady and Efficient Harvesting of Low-Speed Wind Energy

Author:

Zhang Ying,Zeng Qixuan,Wu Yan,Wu Jun,Yuan Songlei,Tan Dujuan,Hu Chenguo,Wang Xue

Abstract

AbstractWind energy is one of the most promising and renewable energy sources; however, owing to the limitations of device structures, collecting low-speed wind energy by triboelectric nanogenerators (TENGs) is still a huge challenge. To solve this problem, an ultra-durable and highly efficient windmill-like hybrid nanogenerator (W-HNG) is developed. Herein, the W-HNG composes coupled TENG and electromagnetic generator (EMG) and adopts a rotational contact-separation mode. This unique design efficiently avoids the wear of friction materials and ensures a prolonged service life. Moreover, the generator group is separated from the wind-driven part, which successfully prevents rotation resistance induced by the friction between rotor and stator in the conventional structures, and realizes low-speed wind energy harvesting. Additionally, the output characteristics of TENG can be complementary to the different performance advantages of EMG to achieve a satisfactory power production. The device is successfully driven when the wind speed is 1.8 m s−1, and the output power of TENG and EMG can achieve 0.95 and 3.7 mW, respectively. After power management, the W-HNG has been successfully applied as a power source for electronic devices. This work provides a simple, reliable, and durable device for improved performance toward large-scale low-speed breeze energy harvesting.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3