2D Layered Materials Based Triboelectric Self‐Powered Sensors

Author:

Rajaboina Rakesh Kumar1ORCID,Khanapuram Uday Kumar1ORCID,Kulandaivel Anu1ORCID

Affiliation:

1. Energy Materials and Devices Lab, Department of Physics National Institute of Technology Warangal Hanamkonda, Warangal Telangana 506004 India

Abstract

AbstractSensors play a crucial role in enhancing the quality of life, ensuring safety, and facilitating technological advancements. Over the past decade, 2D layered materials have been added as new sensing element in addition to existing materials such as metal oxides, semiconductors, metals, and polymers. 2D Layered materials are typically characterized by their single or few‐layer thickness and offer a high surface‐to‐volume ratio, exceptional mechanical strength, and unique electronic attributes. These properties make them ideal candidates for a variety of sensing applications. This review article focused on utilizing 2D layered materials in triboelectric nanogenerators (TENGs) for different sensing applications. The best part of TENG‐based sensing is that it is self‐powered, so no external power supply is required. The initial part of the review focused on the importance of the 2D layered materials and their innovative integration methods in TENGs. Further, this review discusses various sensing applications, including humidity, touch, force, temperature, and gas sensing, highlighting the impact of 2D layered materials in enhancing the sensitivity and selectivity of TENG sensors. The last part of the review discusses the challenges and prospects of TENG‐based self‐powered sensors.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3