Affiliation:
1. Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry and Chemical Engineering Donghua University Shanghai 201600 China
2. School of Pharmacy Key Laboratory of Smart Drug Delivery Ministry of Education Fudan University Shanghai 201203 China
Abstract
AbstractEnhancing the covalent organic framework (COF)’s photocatalytic ability synergistically with gelling formulations remains an urgent challenge for extended bio‐applications. Herein, COF is homogeneously coated on an oxidized carbon nanotube (OCNT) and coordinated by Fe3+ to obtain tubular nanocomplex OCNT@COF‐Fe (O@CF). The results showed that the photodynamic reactive oxygen species (ROS) generation ability of O@CF is enhanced due to the wrapped OCNT and the coordinated Fe3+, which can respectively serve as intermolecular charge transfer channel and electron acceptors/substrates (O2 and H2O) adsorbent to narrow the energy band gaps, increase the light absorption, and decrease the photogenerated carrier recombination. Synergistically, O@CF exhibited pH‐dependent peroxidase and catalase activities, which further enhanced ROS generation and relieved hypoxia, respectively. Meanwhile, O@CF possessed degradation of COF coatings‐dependent photothermal performances. Then, O@CF is evenly incorporated into Schiff base hydrogel via the COF coating‐participated covalent cross‐linking, to obtain an electroconductive hydrogel OCNT@COF‐Fe@Gel (O@CF@G). This O@CF@G can not only improve the mechanical properties of pure gel but also inherit the multifunction of O@CF. Consequently, it can well adhere to diabetic wounds for imbibition, drug‐resistant biofilm elimination, gram‐positive and negative bacteria killing, hypoxia alleviation, and intercellular electrical signal conduction, thus accelerating wound healing.
Funder
Natural Science Foundation of Shanghai
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献