Design and Nanoengineering of Photoactive Antimicrobials for Bioapplications: from Fundamentals to Advanced Strategies

Author:

Xin Huilong1,Liu Yuanyuan1,Xiao Yinan23,Wen Min23ORCID,Sheng Liyuan23ORCID,Jia Zhaojun1ORCID

Affiliation:

1. School of Biomedical Engineering Shenzhen Campus of Sun Yat‐sen University Shenzhen Guangdong 518107 China

2. Shenzhen Institute Peking University Shenzhen Guangdong 518057 China

3. PKU‐HKUST Shenzhen‐Hong Kong Institution Shenzhen Guangdong 518057 China

Abstract

AbstractCurrently, microbial infections have posed an arduous challenge to global public health, whereas the rise of antibiotic resistance is rendering traditional antibiotic therapies futile, prompting the development of new antimicrobial technologies. Photoactive nanomaterials have thus garnered a thriving interest for disinfection owing to their superior antibacterial efficaciousness, favorable biosafety, and rapidness and spatiotemporal precision in excreting bactericidal actions. The review summarizes recent advances and emerging trends in the design, nanoengineering, and bioapplications of photoactive antimicrobials. It commences by elaborating fundamental theories on bacterial resistance, and antibacterial mechanisms of nanomaterials and phototherapy. Subsequently, the regulation of the antibacterial effectiveness of photoactive nanomaterials is comprehensively discussed, centering on criteria and strategies for tuning photoabsorption spectra, photothermal conversion, and photocatalytic efficiency, alongside tactics for enabling synergistic therapies. This is followed by comparative analyses of techniques and modalities for synthesizing and engineering photoactive nanomaterials with diverse structures, forms, and functionalities. Thereafter, the state‐of‐the‐art applications of phototherapies across various medical sectors are portrayed, and key challenges and opportunities are finally discussed to spur future innovations and translation. This review is envisaged to provide useful guidance for devising and developing nanomaterials‐based photoresponsive antimicrobials with application‐specific materials properties and biological functions.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3