Bioinspired Large‐Area Atomically‐Thin Graphene Membranes

Author:

Zhang Dongxu12,Jia Zhiqian1ORCID,Zhang Shengping2345,Hou Dandan2,Wang Jianjun1,Liu Ye2,Han Xiao2345,Van der Bruggen Bart6,Wang Luda2345ORCID

Affiliation:

1. College of Chemistry Beijing Normal University Beijing 100875 China

2. Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation Beijing Graphene Institute Beijing 100095 China

3. National Key Laboratory of Advanced Micro and Nano Manufacture Technology School of Integrated Circuits Peking University Beijing 100871 China

4. Beijing Advanced Innovation Center for Integrated Circuits Beijing 100871 China

5. Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China

6. Department of Chemical Engineering Process Engineering for Sustainable Systems Section KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium

Abstract

AbstractNanoporous graphene membranes are attractive for molecular separations, but it remains challenging to maintain sufficient mechanical strength during scalable fabrication and module development. Inspired by the composite structure of cell membranes and cell walls, a large‐area atomically thin nanoporous graphene membrane supported by a fiber‐reinforced structure with strong interlamellar adhesion is designed. Compared with other graphene‐based membranes of large scale, the fracture stress, fracture strength, and tensile stiffness of the composite membranes can be enhanced by a factor of 17, 67, and 94, respectively. This fiber‐reinforced structure also confers stability of the composite membrane to different curvature states and repeated bending processes after 10 000 times, which provides an opportunity for modularization. The breathable function of such membrane with an ultrahigh gas permeance (≈8.6–23 L m−2 d−1 Pa−1) and an ultralow water vapor transportation rate (WVTR) (≈23–129 g L m−2 d−1) is observed, superior to most commercial materials. This work provides a facile method to fabricate large‐area graphene membranes and paves the road to practical application in the membrane separation field for other 2D films.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3