Symmetry‐Mismatch‐Induced Ferromagnetism in the Interfacial Layers of CaRuO3/SrTiO3 Superlattices

Author:

Shi Wenxiao12ORCID,Zhang Jine3,Chen Xiaobing14,Zhang Qinghua12,Zhan Xiaozhi5,Li Zhe12,Zheng Jie12,Wang Mengqin12,Han Furong3,Zhang Hui3,Gu Lin12,Zhu Tao15,Liu Banggui12,Chen Yunzhong12,Hu Fengxia12,Shen Baogen126,Chen Yuansha127,Sun Jirong1289ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. School of Integrated Circuit Science and Engineering Beihang University Beijing 100191 China

4. Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics Southern University of Science and Technology Shenzhen 518055 China

5. Spallation Neutron Source Science Center Dongguan Guangdong 523803 China

6. Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences Ningbo Zhejiang 315201 China

7. Fujian Innovation Academy Chinese Academy of Sciences Fuzhou Fujian 350108 China

8. Spintronics Institute University of Jinan Jinan Shandong 250022 China

9. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractBy modifying the entangled multi‐degrees of freedom of transition‐metal oxides, interlayer coupling usually produces interfacial phases with unusual functionalities. Herein, a symmetry‐mismatch‐driven interfacial phase transition from paramagnetic to ferromagnetic state is reported. By constructing superlattices using CaRuO3 and SrTiO3, two oxides with different oxygen octahedron networks, the tilting/rotation of oxygen octahedra near interface is tuned dramatically, causing an angle increase from ≈150° to ≈165° for the RuORu bond. This in turn drives the interfacial layer of CaRuO3, ≈3 unit cells in thickness, from paramagnetic into ferromagnetic state. The ferromagnetic order is robust, showing the highest Curie temperature of ≈120 K and the largest saturation magnetization of ≈0.7 µB per formula unit. Density functional theory calculations show that the reduced tilting/rotation of RuO6 octahedra favors an itinerant ferromagnetic ground state. This work demonstrates an effective phase tuning by coupled octahedral rotations, offering a new approach to explore emergent materials with desired functionalities.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3