Neural Architecture Search with In‐Memory Multiply–Accumulate and In‐Memory Rank Based on Coating Layer Optimized C‐Doped Ge2Sb2Te5 Phase Change Memory

Author:

Yan Longhao1,Wu Qingyu2,Li Xi2,Xie Chenchen2,Zhou Xilin2,Li Yuqi1,Shi Daijing1,Yu Lianfeng1,Zhang Teng1,Tao Yaoyu13,Yan Bonan13,Zhong Min4,Song Zhitang2,Yang Yuchao1356ORCID,Huang Ru13

Affiliation:

1. Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits Peking University Beijing 100871 China

2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

3. Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano‐optoelectronics Peking University Beijing 100871 China

4. Shanghai Integrated Circuit R&D Center Shanghai 201210 China

5. School of Electronic and Computer Engineering Peking University Shenzhen 518055 China

6. Center for Brain Inspired Intelligence Chinese Institute for Brain Research (CIBR) Beijing 102206 China

Abstract

AbstractNeural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb phase change memory (PCM) chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply‐accumulate (MAC) and in‐memory rank for efficient NAS. The impacts of the coating layer material are systematically analyzed for the blade‐type heating electrode on the device uniformity and in turn NAS performance. The random weights in the searched network architecture can be fine‐tuned in the last stage. With 512 × 512 arrays based on 40 nm CMOS process, the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks and improved the energy and time efficiency by 4779× and 123×, respectively, compared with NAS running on graphic processing unit (GPU). This work can expand the hardware accelerated in‐memory operators, and significantly extend the applications of in‐memory computing enabled by nonvolatile memory in advanced machine learning tasks.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference47 articles.

1. B.Zoph Q. V.Le presented atInt. Conf.onLearningRepresentions(ICLR) Toulon France April2017.

2. M. X.Tan B.Chen R. M.Pang V.Vasudevan M.Sandier A.Howard Q. V.Le presented atIEEE Conf. ComputerVision andPattern Recognition(CVPR) Long Beach USA June2019.

3. M. X.Tan Q. V.Le presented atInt. Conf.onMachineLearning(ICML) Long Beach USA June2019.

4. H.Cai C.Gan T.Wang Z.Zhang S.Han presented atInt. Conf.onLearningRepresentions(ICLR) Addis Ababa Ethiopia April2020.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3