Affiliation:
1. State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
2. Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei Ningbo 315016 China
Abstract
AbstractEvidence shows that the enzyme human cytochrome P450 1A1 (CYP1A1) is associated with cancer; indeed, it is shown to play a key role in the occurrence of many cancers. Therefore, the molecular imaging of CYP1A1 in cells is of great significance for revealing the process of cancer development. Herein, a chemosensor, DCBEM, is reported that is able to selectively recognize CYP1A1 and achieve long‐term labeling of the enzyme through an enzymolysis cascade reaction. The design of DCBEM relies on the reaction between the highly electrophilic intermediate (quinone methide) and the enzyme, which forms a fluorescent label with CYP1A1 via covalent bonding. The chemosensor reveals excellent specificity toward CYP1A1 and achieves high‐resolution monitoring of cell migration with a strong retention capacity in vivo (up to 4 days). Further, using DCBEM, the pathways of invasion of colon cancer and breast cancer cells are successfully visualized in living mice. This method of labeling enzymes provides a simple and efficient way to render ordinary fluorescent chemosensors suitable for the long‐term tracking of cancer cells, for which such molecular tools are currently lacking.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献