A Bioinspired Polymer‐Based Composite Displaying Both Strong Adhesion and Anisotropic Thermal Conductivity

Author:

Zhang Heng1,He Qingxia1,Yu Huitao1,Qin Mengmeng1,Feng Yiyu12,Feng Wei12ORCID

Affiliation:

1. School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 P. R. China

2. Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education Tianjin University Tianjin 300350 P. R. China

Abstract

AbstractThe integration and functionality of high‐power electronic architectures or devices require a high strength and good heat flow at the interface. However, simultaneously improving the interfacial bonding and phonon transport of polymers is challenging because of the tradeoff between the cross‐linked flexible chains and high‐quality crystalline structure. Here, a copolymer, poly(dopamine methacrylate‐co‐hydroxyethyl methacrylate [P(DMA‐HEMA)] is designed and synthesized, inspired by the snail and mussel adhesion. The copolymer achievs a high surface adhesion up to 6.38 MPa owing to the synergistic effects of hydrogen bonds and mechanical interlocking. When the copolymer is introduced into vertically aligned carbon nanotubes (VACNTs), the catechol groups in P(DMA‐HEMA) formed strong bonding with the nanotubes through π‐π interactions at the interface. As a result, the P(DMA‐HEMA)/VACNTs composite shows a high through‐plane thermal conductivity (21.46 W m−1 K−1), an in‐plane thermal conductivity that is 3.5 times higher than that of pristine VACNTs, and an extremely low thermal contact resistance (20.27 K mm2 W−1). Furthermore, the composite forms weld‐free high‐strength connections between two pieces of various metals to bridge directional thermal pathways. It also exhibits excellent interfacial heat transfer capability and high reliability even under zero‐pressure conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3