3D Highly Stretchable Liquid Metal/Elastomer Composites with Strain‐Enhanced Conductivity

Author:

Fang Ruyue1,Yao Bin2,Chen Tianwu1,Xu Xinwei3,Xue Dingchuan1,Hong Wei4,Wang Hong3,Wang Qing2,Zhang Sulin125ORCID

Affiliation:

1. Department of Engineering Science and Mechanics The Pennsylvania State University University Park PA 16802 USA

2. Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA

3. Department of Materials Science and Engineering Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen Guangdong 518055 China

4. Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China

5. Department of Biomechanical Engineering The Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractCurrent stretchable conductors, often composed of elastomeric composites infused with rigid conductive fillers, suffer from limited stretchability and durability, and declined conductivity with stretching. These limitations hinder their potential applications as essential components such as interconnects, sensors, and actuators in stretchable electronics and soft machines. In this context, an innovative elastomeric composite that incorporates a 3D network of liquid metal (LM), offering exceptional stretchability, durability, and conductivity, is introduced. The mechanics model elucidates how the interconnected 3DLM architecture imparts softness and stretchability to the composites, allowing them to withstand tensile strains of up to 500% without rupture. The relatively low surface‐to‐volume ratio of the 3DLM network limits the reforming of the oxide layer during cyclic stretch, thereby contributing to low permanent strain and enhanced durability. Additionally, the 3D architecture facilitates crack blunting and stress delocalization, elevating fracture resistance, while simultaneously establishing continuous conductive pathways that result in high conductivity. Notably, the conductivity of the 3DLM composite increases with strain during substantial stretching, highlighting its strain‐enhanced conductivity. In comparison to other LM‐based composites featuring 0D LM droplets, the 3DLM composite stands out with superior properties.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3