Stair‐Stepping Mechanical Metamaterials with Programmable Load Plateaus

Author:

Zeng Chengjun1ORCID,Liu Liwu1,Hu Yunqiang1,Zhao Wei1,Xin Xiaozhou1,Liu Yanju1,Leng Jinsong2ORCID

Affiliation:

1. Department of Astronautical Science and Mechanics Harbin Institute of Technology (HIT) Harbin 150001 P. R. China

2. Center for Composite Materials and Structures Harbin Institute of Technology (HIT) Harbin 150080 P. R. China

Abstract

AbstractMaterials with target load plateaus offer the potential for developing innovative vibration suppression and isolation systems for applications such as satellite platforms, submarines, and electric vehicles. However, implementing these materials can pose significant challenges. In this study, stair‐stepping mechanical metamaterials with programmable load plateaus are presented, which are created via a three‐level (unit, module, and 3D object) construction strategy. The strategy inspired by the inverse design concept achieves tunability in the number and properties of load plateaus within the force–displacement profiles of the metamaterials. This approach even yields appealing stair‐stepping response patterns, as validated by experiments and finite element simulations. Promisingly, programming the unit from its initial configuration to a “zero stiffness” configuration enables these metamaterials excellent vibration isolation performance. Furthermore, two reversible methods are proposed for switching among various unit configurations, namely shape memory programming and supporting payload. This innovative design strategy for programmable load plateaus opens up new possibilities for creating metamaterials with customized force–displacement responses. It also provides opportunities to incorporate multimodal vibration isolation capabilities into precision devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3