Affiliation:
1. Institute of Solid Mechanics Beihang University Beijing 100191 China
2. School of Aeronautic Science and Engineering Beihang University Beijing 100191 China
3. The First Aircraft Institute of AVIC AVIC Xi'an 710089 China
4. School of Aeronautics and Astronautics Sun Yat‐sen University Guangzhou 510275 China
5. Tianmushan Laboratory Xixi Octagon City, Yuhang District 310023 Hangzhou China
Abstract
AbstractFast shape‐reconfiguration with large morphing amplitude is crucial for intelligent materials/structures that require tunable functions and adaptivity to different environments. However, the morphing strategies are rare in combining ultrafast speed, large amplitude, and high energy‐efficiency simultaneously. Herein, a class of 2D and 3D chiral mechanical metamaterials are proposed to tackle this challenge based on prestressed bistable metallic shells. The metamaterial is architected by cylindrical cores and slender bistable shells with an anti‐chiral arrangement. The bistable shell has a flat extended shape and a rolled‐up shape that can wrap on the connected cylindrical cores compatibly, and thus endow the metamaterials with a tunable morphing amplitude that can even extend to infinity. By experiments, simulations and theoretical modelling, it is demonstrated that the bistable shell can transform from the extended state to the rolled‐up state with a transitional speed of 7.56 m s−1, which provides the 2D and 3D metamaterials with 25.38‐ and 101.14‐times body area/volume variation per second, respectively. Moreover, a smart trapper for capturing moving objects and a phononic structure with tunable band gaps are realized based on the metamaterials. This work provides a straightforward platform to design metamaterials and their derived systems with ultrafast and large‐amplitude shape‐reconfigurability.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献