Multimodal Characterization of Crystal Structure and Formation in Rubrene Thin Films Reveals Erasure of Orientational Discontinuities

Author:

Tan Jenna A.12ORCID,Dull Jordan T.3ORCID,Zeltmann Steven E.24,Tulyagankhodjaev Jakhangirkhodja A.25,Johnson Holly M.3,Liebman‐Peláez Alex6,Folie Brendan D.6,Dönges Sven A.27,Khatib Omar27,Raybin Jonathan G.12,Roberts Trevor D.12,Hamerlynck Leo M.12,Tanner Christian P. N.12,Lee Jina28,Ophus Colin9,Bustillo Karen C.9,Raschke Markus B.27ORCID,Ohldag Hendrik101112,Minor Andrew M.249,Rand Barry P.313,Ginsberg Naomi S.1261415ORCID

Affiliation:

1. Department of Chemistry University of California Berkeley CA 94720 USA

2. NSF Science & Technology Center STROBE Berkeley CA 94720 USA

3. Department of Electrical and Computer Engineering Princeton University Princeton NJ 08544 USA

4. Department of Materials Science and Engineering University of California Berkeley CA 94720 USA

5. Department of Chemistry University of California Los Angeles CA 90095 USA

6. Department of Physics University of California Berkeley CA 94720 USA

7. Department of Physics and JILA University of Colorado Boulder CO 80309 USA

8. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA 91125 USA

9. National Center for Electron Microscopy Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

10. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

11. Department of Material Sciences and Engineering Stanford University Stanford CA 94305 USA

12. Department of Physics University of California Santa Cruz Santa Cruz CA 94064 USA

13. Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544 USA

14. Materials Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

15. Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

AbstractMultimodal multiscale characterization provide opportunities to study organic semiconducting thin films with multiple length scales, across multiple platforms, to elucidate crystallization mechanisms of the various microstructures that impact functionality. With polarized scanning transmission X‐ray and 4D‐scanning transmission electron microscopy, hybrid crystalline structures in rubrene thin films in which large crystalline domains surround a common nucleus and transition to a spherulite morphology at larger radii is observed. These high‐resolution techniques reveal how azimuthal orientational discontinuities at smaller radii are erased as spherulite morphology takes hold. In situ crystallization in the films with optical microscopy is also captured, discovering the importance of considering the initial temperature increase of a film during thermal annealing over the crystallization timescale. This kinetic information of the radial crystallization rate and of corresponding film heating kinetics is used to estimate the temperature at which the larger crystalline regions transition into a spherulite. By combining the results obtained from the different characterization modes, it is learned that thermal conditions can sensitively affect the crystallization of rubrene and other organic thin films. The observations suggest opportunities for more complex temperature‐dependent processing to maximize hybrid structures’ functionality in organic thin films and demonstrate that multimodal studies deepen the understanding of structure‐function dynamics.

Funder

Office of Science

Basic Energy Sciences

U.S. Department of Energy

Alfred P. Sloan Foundation

David and Lucile Packard Foundation

Camille and Henry Dreyfus Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3