Molecular Packing and Dielectric Property Optimization through Peripheral Halogen Swapping Enables Binary Organic Solar Cells with an Efficiency of 18.77%

Author:

Liang Huazhe1,Chen Hongbin1,Wang Peiran1,Zhu Yu1,Zhang Yunxin2,Feng Wanying1,Ma Kangqiao1,Lin Yi3,Ma Zaifei3,Long Guankui2,Li Chenxi1,Kan Bin2,Yao Zhaoyang1ORCID,Zhang Hongtao1,Wan Xiangjian1,Chen Yongsheng1ORCID

Affiliation:

1. State Key Laboratory and Institute of Elemento‐Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China

2. School of Materials Science and Engineering National Institute for Advanced Materials Renewable Energy Conversion and Storage Center (RECAST) Nankai University Tianjin 300350 China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low‐dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

Abstract

AbstractPeripheral halogen regulations can endow non‐fullerene acceptors (NFAs) with enhanced features as organic semi‐conductors and further boost efficient organic solar cells (OSCs). Herein, based on a remarkable molecular platform of CH14 with more than six halogenation positions, a preferred NFA of CH23 is constructed by synergetic halogen swapping on both central and end units, rendering the overall enlarged molecular dipole moment, packing density and thus relative dielectric constant. Consequently, the CH23‐based binary OSC reaches an excellent efficiency of 18.77% due to its improved charge transfer/transport dynamics, much better than that of 17.81% for the control OSC of CH14. This work demonstrates the great potential for further achieving state‐of‐the‐art OSCs by delicately regulating the halogen formula on these newly explored CH‐series NFAs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3