Affiliation:
1. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
2. School of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
3. Department of Chemical and Environmental Engineering University of Nottingham Ningbo China Ningbo 315100 China
4. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xian 710049 China
5. Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices Ningbo 315201 China
Abstract
AbstractMaterial design of guest acceptor is always a big challenge for improving the efficiency of ternary organic solar cells (OSCs). Here, a pair of isomeric nonfullerene acceptors based on quinoxaline core, Qx–p‐C7H8O and Qx–m‐C7H8O, is designed and synthesized. By moving the alkoxy chain attached on side phenyl from meta‐position to para‐position, both π–π stacking distance and crystallinity are enhanced simultaneously. They obtain the uplifted lowest unoccupied molecular orbital level. Compared to Qx–m‐C7H8O, Qx–p‐C7H8O exhibits wider absorption spectrum and higher extinction coefficient. Using D18‐Cl:N3 as host materials, the addition of guest acceptor Qx–p‐C7H8O significantly improves the power conversion efficiency (PCE) from 17.61% to 18.49% because of higher open‐circuit voltage (0.875 V) and short‐circuit current density (27.85 mA cm−2). This can be attributed to the faster exciton dissociation, more balanced carrier mobility, fine fiber morphology, and lower energy loss in the ternary devices. However, Qx–m‐C7H8O‐based ternary device achieves relatively low PCE of 17.17% because this device shows extremely low electron mobility. The results indicate that molecular stacking, film morphology, etc., can be effectively modulated by fine‐tuning the side chains of guest materials, which may be an effective design rule for further improving the PCE of OSCs.
Funder
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Natural Science Foundation of Ningbo
U.S. Department of Energy
National Key Research and Development Program of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献