A Ubiquitin‐Competitive Strategy Based on the Element Microenvironment to Treat Osteoarthritis

Author:

Kong Keyu1,Yang Yuqi2,Chang Yongyun1,Chen Youdong2,Yang Xiao1,Qin Jiahao2,Song Zhuorun3,Lu Shunyi3,Zhai Zanjing1,Ge Jun3,Li Huiwu1,Cheng Liang2ORCID

Affiliation:

1. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiaotong University School of Medicine Shanghai 200023 China

2. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou 215123 China

3. Department of Orthopedic Surgery The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215000 China

Abstract

AbstractRecent research on ferroptosis and cuproptosis has underscored the crucial role of trace element regulation in osteoarthritis (OA) treatment. However, research systematically addressing the alterations in nutrient elements in OA cartilage is lacking. This study is initiated using clinical specimens to quantify metal element concentrations in both damaged and intact cartilage to identify deficient trace elements within the inflammatory and senescent microenvironments of OA. Based on the preliminary findings of selenium (Se) and gallium (Ga) deficiencies in OA cartilage, tailored nanoparticles based on Se and Ga are designed and validated for their antioxidant ability. GaSex nanoparticles demonstrated significant efficacy in mitigating chondrocyte degeneration and extracellular matrix degradation induced by inflammatory factors and in alleviating cartilage abrasion, hyperalgesia, and abnormal gait in a destabilization of the medial meniscus (DMM) mouse model. Mechanistically, GaSex nanoparticles activated the Nrf2 pathway and competitively inhibited the ubiquitin‐mediated degradation of Gpx4, thus inhibiting ferroptosis. This study systematically designed GaSex nanoparticles based on the imbalance of trace elements within the OA knee joint microenvironment and demonstrated robust antioxidant capabilities and remarkable competitive properties for ubiquitin, thereby providing a novel therapeutic solution for OA treatment.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3