Chondrocyte membrane–coated nanoparticles promote drug retention and halt cartilage damage in rat and canine osteoarthritis

Author:

Deng Ronghui123ORCID,Zhao Ruifang24ORCID,Zhang Zining13,Chen Yang24,Yang Meng13,Lin Yixuan24,Ye Jing13,Li Nan24,Qin Hao24ORCID,Yan Xin13,Shi Jian2,Yuan Fuzhen13,Song Shitang13,Xu Zijie13ORCID,Song Yifan13,Fu Jiangnan13,Xu Bingbing13,Nie Guangjun24ORCID,Yu Jia-Kuo135ORCID

Affiliation:

1. Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China.

2. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

3. Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China.

4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

5. Orthopedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing 102218, P. R. China.

Abstract

Osteoarthritis (OA) is a chronic joint disease characterized by progressive degeneration of articular cartilage. A challenge in the development of disease-modifying drugs is effective delivery to chondrocytes. The unique structure of the joint promotes rapid clearance of drugs through synovial fluid, and the dense and avascular cartilage extracellular matrix (ECM) limits drug penetration. Here, we show that poly(lactide- co -glycolic acid) nanoparticles coated in chondrocyte membranes (CM-NPs) were preferentially taken up by rat chondrocytes ex vivo compared with uncoated nanoparticles. Internalization of the CM-NPs was mediated primarily by E-cadherin, clathrin-mediated endocytosis, and micropinocytosis. These CM-NPs adhered to the cartilage ECM in rat knee joints in vivo and penetrated deeply into the cartilage matrix with a residence time of more than 34 days. Simulated synovial fluid clearance studies showed that CM-NPs loaded with a Wnt pathway inhibitor, adavivint (CM-NPs-Ada), delayed the catabolic metabolism of rat and human chondrocytes and cartilage explants under inflammatory conditions. In a surgical model of rat OA, drug-loaded CM-NPs effectively restored gait, attenuated periarticular bone remodeling, and provided chondroprotection against cartilage degeneration. OA progression was also mitigated by CM-NPs-Ada in a canine model of anterior cruciate ligament transection. These results demonstrate the feasibility of using chondrocyte membrane–coated nanoparticles to improve the pharmacokinetics and efficacy of anti-OA drugs.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3