Affiliation:
1. Department of Materials Science Institute of Optoelectronics State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
2. Zhangjiang Fudan International Innovation Center Shanghai 201210 P. R. China
Abstract
AbstractThe flexible titanium dioxide (TiO2) nanofibers (NFs) film are promising candidates for high‐performance wearable optoelectronic devices. However, the TiO2 ultraviolet photodetectors (UV PDs) generally suffer from low photosensitivity, which limits the practical applications. Herein, a TiO2 (TO) NFs film flexible photodetector integrated by ferroelectric BaTiO3 (BTO) NFs is developed via electrospinning technology with double sprinklers and in situ heat treatment. Compared with TO NFs PD with poor on/off ratio ≈44, the BTO@TO NFs PD‐2 exhibits an excellent on/off ratio of ≈1.5 × 104 due to the dramatically restrained dark current. The ultralow dark current (pA level) is attributed to the depletion of photogenerated carriers by the space high‐resistance state induced by the downward self‐polarization field in ferroelectric BaTiO3 NFs. The ferroelectric domain with larger downward orientation in polarized BTO@TO NFs exhibits stronger self‐polarization field to modify the directional transport of photogenerated carriers and enhances the band bending level, which improves the photocurrent of device. The special structure woven by ferroelectric nanofiber with self‐polarization will provide a promising approach for improving the performance of flexible photodetectors.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Science and Technology Commission of Shanghai Municipality
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献