A Tunable Polarization Field for Enhanced Performance of Flexible BaTiO3@TiO2 Nanofiber Photodetector by Suppressing Dark Current to pA Level

Author:

Su Li12,Yan Tingting1,Liu Xinya1,Cao Fa12,Fang Xiaosheng1ORCID

Affiliation:

1. Department of Materials Science Institute of Optoelectronics State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China

2. Zhangjiang Fudan International Innovation Center Shanghai 201210 P. R. China

Abstract

AbstractThe flexible titanium dioxide (TiO2) nanofibers (NFs) film are promising candidates for high‐performance wearable optoelectronic devices. However, the TiO2 ultraviolet photodetectors (UV PDs) generally suffer from low photosensitivity, which limits the practical applications. Herein, a TiO2 (TO) NFs film flexible photodetector integrated by ferroelectric BaTiO3 (BTO) NFs is developed via electrospinning technology with double sprinklers and in situ heat treatment. Compared with TO NFs PD with poor on/off ratio ≈44, the BTO@TO NFs PD‐2 exhibits an excellent on/off ratio of ≈1.5  × 104 due to the dramatically restrained dark current. The ultralow dark current (pA level) is attributed to the depletion of photogenerated carriers by the space high‐resistance state induced by the downward self‐polarization field in ferroelectric BaTiO3 NFs. The ferroelectric domain with larger downward orientation in polarized BTO@TO NFs exhibits stronger self‐polarization field to modify the directional transport of photogenerated carriers and enhances the band bending level, which improves the photocurrent of device. The special structure woven by ferroelectric nanofiber with self‐polarization will provide a promising approach for improving the performance of flexible photodetectors.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3