Giant Tunneling Electro‐Resistance in Ultrathin Ferroelectric Tunnel Junctions: The Interface Barrier Gain Mechanism

Author:

Yu Xing1,Zhang Xiwen2,Ma Liang13,Wang Jinlan13ORCID

Affiliation:

1. Key Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics Southeast University Nanjing 211189 China

2. School of Mechanical Engineering Southeast University Nanjing 211189 China

3. Suzhou Laboratory Suzhou 215009 China

Abstract

AbstractUltrathin ferroelectric tunnel junctions (FTJs) hold considerable promise for next‐generation, high‐speed, low‐power, and high‐density nonvolatile memory applications. Achieving a substantial tunneling electro‐resistance (TER) remains a challenge as the ferroelectric layer is thinned to nanoscale dimensions, often resulting in a diminished or lost polarization. An innovative interface barrier gain mechanism is introduced, employing interface electronic state modulation to precisely control the size of an additional interface barrier. This strategy lessens the dependency of the tunneling barrier on ferroelectric polarization strength, facilitating a remarkable TER even at ferroelectric thicknesses as minimal as ≈1 nm. The focus is on composite FTJs using In2Se3/MTe2 (M = Mo, W), where the inclusion of an MTe2 monolayer disrupts the asymmetric electrode configuration. The weak ferroelectric polarization reversal of the In2Se3 monolayer effectively modulates the electronic state coupling at the In2Se3/MTe2 interface. This modulation leads to variations in the width and height of the Schottky barrier at the heterojunction‐electrode interface corresponding with the ferroelectric polarization reversal, establishing a beneficial Ohmic contact in the “on” state and resulting in an exponential TER increase up to 5.4 × 106%. This work introduces a universal mechanism to overcome the thickness limitations traditionally associated with enhancing TER, marking a significant advancement in the development of ultrathin ferroelectric nonvolatile devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3