Self‐Confinement of Na Metal Deposition in Hollow Carbon Tube Arrays for Ultrastable and High‐Power Sodium Metal Batteries

Author:

Hou Jingrui1,Xu Tingting1,Wang Bingyan1,Yang Haoyuan1,Wang Hui12,Kong De Zhi1,Lyu Linlong2,Li Xinjian1,Wang Ye1,Xu Zheng‐Long2ORCID

Affiliation:

1. Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China

2. Department of Industrial and Systems Engineering, Research Institute of Advanced Manufacturing the Hong Kong Polytechnic University Hung Hom Hong Kong SAR 999077 P. R. China

Abstract

AbstractSodium metal batteries are promising next‐generation energy storage technology by using energy‐dense and affordable Na metal anodes, yet suffering uncontrollable Na dendritic growth issues. Herein, Au nanoparticle@hollow amorphous carbon tube yolk/shell arrays (Au/HCT‐CC) is rationally designed on carbon cloth as a dynamic host. In situ transmission electron microscopy observations reveal a regulated dendrite‐free Na metal plating/stripping within the Au/HCT‐CC host. The self‐confinement of Na metal deposition in the hollow carbon can further stabilize the electrolyte/electrode interface and homogenize Na ion flux, as evidenced by rigorous experimental and theoretical characterizations, thus successfully accommodating the hurdles to Na metal anodes. When cycling in half cells, the Au/HCT‐CC electrodes deliver remarkably high coulombic efficiencies (CEs) of 99.96% over 2200 h at 5 mA cm−2. The high CE of 99.54% is preserved even under harsh cycling conditions of 10 mA cm−2 and 20 mAh cm−2 for 250 cycles. These values rival the state‐of‐the‐art electrochemical performance for Na metal anodes in literature. Finally, the practical feasibility of the new anode is demonstrated by cycling in Na3V2(PO4)3@C||Na‐Au/HCT‐CC full cells over 900 cycles with an extremely low capacity degradation rate of 0.017% per cycle.

Funder

Natural Science Foundation of Henan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3