Affiliation:
1. Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
2. Department of Industrial and Systems Engineering, Research Institute of Advanced Manufacturing the Hong Kong Polytechnic University Hung Hom Hong Kong SAR 999077 P. R. China
Abstract
AbstractSodium metal batteries are promising next‐generation energy storage technology by using energy‐dense and affordable Na metal anodes, yet suffering uncontrollable Na dendritic growth issues. Herein, Au nanoparticle@hollow amorphous carbon tube yolk/shell arrays (Au/HCT‐CC) is rationally designed on carbon cloth as a dynamic host. In situ transmission electron microscopy observations reveal a regulated dendrite‐free Na metal plating/stripping within the Au/HCT‐CC host. The self‐confinement of Na metal deposition in the hollow carbon can further stabilize the electrolyte/electrode interface and homogenize Na ion flux, as evidenced by rigorous experimental and theoretical characterizations, thus successfully accommodating the hurdles to Na metal anodes. When cycling in half cells, the Au/HCT‐CC electrodes deliver remarkably high coulombic efficiencies (CEs) of 99.96% over 2200 h at 5 mA cm−2. The high CE of 99.54% is preserved even under harsh cycling conditions of 10 mA cm−2 and 20 mAh cm−2 for 250 cycles. These values rival the state‐of‐the‐art electrochemical performance for Na metal anodes in literature. Finally, the practical feasibility of the new anode is demonstrated by cycling in Na3V2(PO4)3@C||Na‐Au/HCT‐CC full cells over 900 cycles with an extremely low capacity degradation rate of 0.017% per cycle.
Funder
Natural Science Foundation of Henan Province
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献