Recent Progress in MOF‐Derived Porous Materials as Electrodes for High‐Performance Lithium‐Ion Batteries

Author:

Song Gongjing1,Shi Yuxin1,Jiang Shu12,Pang Huan1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China

2. Interdisciplinary Materials Research Center Institute for Advanced Study Chengdu University Chengdu 610106 P. R. China

Abstract

AbstractIn recent years, metal‐organic frameworks, especially MOF‐based derivatives, have been regarded as one of the best candidate electrode materials for the next generation of advanced materials, due to high porosity, large surface area, modifiable functional groups as well as controllable chemical composition. This review presents the corresponding synthesis methods, structural design, and electrochemical performance of MOF‐derived materials, including metal oxides, metal sulfides, metal phosphides, and carbon materials, in high‐performance lithium‐ion batteries. Subsequently, the problems that exist in the current application of MOF‐based derivatives as electrodes in lithium‐ion batteries are discussed along with possible and feasible solutions. At last, some reasonable pathways and strategies for the design of MOF derivatives are also suggested.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3