Human Nervous System Inspired Modified Graphene Nanoplatelets/Cellulose Nanofibers‐Based Wearable Sensors with Superior Thermal Management and Electromagnetic Interference Shielding

Author:

Zhu Zijuan12,Tian Zhongyuan12,Liu Yanze12,Yue Shangzhi12,Li Yongji12,Wang Zhong Lin34,Yu Zhong‐Zhen12,Yang Dan12ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

2. Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing 100029 China

3. College of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA

4. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

Abstract

AbstractWearable sensing technologies have witnessed rapid development in recent years due to their accessibility, functionality, and affordability. However, heat accumulation and electromagnetic interference in electronic components adversely affect the sensing performance and seriously damage human health. Herein, cellulose nanofibers (CNFs)‐based composites with high thermal conductivity (TC) and excellent electromagnetic interference (EMI) shielding performance are prepared using CNFs as templates followed by coating with tannic acid non‐covalent and 3‐aminopropyltriethoxysilane covalent co‐modified graphene nanoplatelets (denoted as mGNPs) through a simple electrostatic self‐assembly method. The subsequent hot‐pressing process yield order and layer mGNPs in CNFs‐based composites with mGNPs distributed along the orientation and in close contact with CNFs, a fashion similar to the human nervous system. The resulting CNFs‐based composites reveal a high TC of 136.2 W/(m·K) and a superior EMI shielding effectiveness of 105 dB. Thus, they are used as wearable sensors based on the triboelectric effect to monitor human health in real‐time, as well as express emotion through Morse code. In sum, the proposed strategy provides an avenue to prolong the service life of flexible wearable sensors and ensure their safe use, promising for future wisdom in healthcare and smart robotics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3