Heterogeneous Catalyst Coating for Boosting the Activity and Chromium Tolerance of Cathodes for Solid Oxide Fuel Cells

Author:

Huang Jiongyuan1,Liang Fujun1,Zhao Sunce2,Zhao Ling2,Ai Na3,Jiang San Ping45,Wang Xin1,Fang Huihuang6,Luo Yu6,Chen Kongfa1ORCID

Affiliation:

1. College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350108 China

2. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan Hubei 430074 China

3. Fujian College Association Instrumental Analysis Center Fuzhou University Fuzhou Fujian 350108 China

4. National Energy Key Laboratory for New Hydrogen‐Ammonia Energy Technologies & Foshan Xianhu Laboratory Foshan 528200 China

5. WA School of Mines: Minerals Energy and Chemical Engineering Curtin University Perth WA 6102 Australia

6. National Engineering Research Center of Chemical Fertilizer Catalyst (NERC‐CFC) College of Chemical Engineering Fuzhou University Fuzhou Fujian 350002 China

Abstract

AbstractA challenge hindering the development of durable solid oxide fuel cells (SOFCs) is the significant performance degradation of cathodes owing to poisoning by volatile Cr originating from the Fe─Cr alloy interconnect. Herein, a heterogeneous catalyst coating, composed of Ba1−xCe0.8Gd0.2O3–δ and BaCO3, remarkably improves the oxygen adsorption, dissociation capability, and Cr resistance of a La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) cathode is demonstrated. The coherent heterointerface interactions formed between the catalyst coating and LSCF result in varied levels of surface strain and electrostatic interactions, significantly suppressing Sr surface segregation on LSCF. A single cell with the catalyst coating‐decorated LSCF (CC‐LSCF) achieves a peak power density of 1.73 W cm−2 at 750 °C, with no noticeable performance degradation for 100 h. The CC‐LSCF cathode also exhibits outstanding durability under accelerated Cr poisoning conditions, compared with the tremendous degradation rate of 0.42% h−1 for the bare LSCF cathode. The enhanced Cr resistance is attributed to synergy induced by the stabilization of the lattice Sr cations by heterointerface interactions and the remarkable structural stability of the catalyst coating under Cr poisoning conditions. The novel heterointerface engineering strategy in this study provides insight into the design and development of active and Cr‐tolerant cathodes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3