Enhancing the Selectivity and Transparency of the Electron Contact in Silicon Heterojunction Solar Cells by Phosphorus Catalytic Doping

Author:

Duan Weiyuan1ORCID,Mains Gilbert12,Gebrewold Habtamu Tsegaye12,Bittkau Karsten1,Lambertz Andreas1,Xu Binbin12,Lauterbach Volker1,Eberst Alexander12,Nicholson Nathan3,Korte Lars3,Yaqin Muhammad Ainul12,Zhang Kai12,Yang Qing12,Rau Uwe12,Ding Kaining1

Affiliation:

1. IEK‐5 Photovoltaik Forschungszentrum Jülich GmbH 52428 Jülich Germany

2. JARA Energy and Faculty of Electrical Engineering and Information Technology RWTH Aachen University 52074 Aachen Germany

3. Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Institute Silicon Photovoltaics 12489 Berlin Germany

Abstract

AbstractAn intrinsic hydrogenated amorphous silicon (a‐Si:H(i)) film and a doped silicon film are usually combined in the heterojunction contacts of silicon heterojunction (SHJ) solar cells. In this work, a post‐doping process called catalytic doping (Cat‐doping) on a‐Si:H(i) is performed on the electron selective side of SHJ solar cells, which enables a device architecture that eliminates the additional deposition of the doped silicon layer. Thus, a single phosphorus Cat‐doping layer combines the functions of two other layers by enabling excellent interface passivation and high carrier selectivity. The overall thinner layer on the window side results in higher spectral response at short wavelengths, leading to an improved short‐circuit current density of 40.31 mA cm−2 and an efficiency of 23.65% (certified). The cell efficiency is currently limited by sputter damage from the subsequent transparent conductive oxide fabrication and low carrier activation in the a‐Si:H(i) with Cat‐doping. Numerical device simulations show that the a‐Si:H(i) with Cat‐doping can provide sufficient field effect passivation even at lower active carrier concentrations compared to the as‐deposited doped layer, due to the lower defect density.

Funder

Helmholtz Energy Materials Foundry

Helmholtz Association

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3