Enzyme‐Assisted Activation Technique for Producing Versatile Hydrogel Microparticle Scaffolds with High Surface Chemical Reactivity

Author:

Zhang Jing1,Zeng Yunfeng1,Heng Yongyuan1,Shen Yu1,Sun Ximeng1,Wang Yijia1,Zheng Haiping1,Zeng Ming2,Yu Ziyi1ORCID

Affiliation:

1. State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China

2. Department of Dermatology The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou 510655 P. R. China

Abstract

AbstractAdvancing the integration of nonliving and living components relies heavily on functional hydrogel materials with biocompatibility and customizability. In this study, an enzyme‐assisted surface activation method is developed to produce reactive hydrogel microparticles (HMPs) comprising thiolated hyaluronic acid and hyperbranched poly(β‐hydrazide esters). Fluorescence labeling analysis reveals an over six‐fold increase in surface‐active functional group density on the hydrogels and three‐fold on HMPs after enzyme activation. This enhancement improves accessibility of active elements, facilitating post‐functionalization and optimizing their capacity to support initial cell adhesion and spreading as carriers for cell cultures. Additionally, by utilizing the exposed reactive double bonds on the HMP surfaces post‐enzymatic treatment, thiolated HMPs are produced through a thiol‐ene coupling reaction with thiolated polymers. These thiolated HMPs bond together spontaneously, resulting in the formation of annealed granular hydrogels with interconnected large‐pore networks and a tunable storage modulus (G’) from tens to hundreds of pascals, compatible with most soft tissues. Integrated with 3D bioprinting, this hydrogel ink generates prints that foster cell adhesion, migration, growth, and network formation. Moving forward, integrating various granular hydrogel scaffold systems with the enzyme‐assisted activation technique holds significant promise for enhancing performance and expanding applications in regenerative medicine and innovative living materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3