Multilevel Encoding Physically Unclonable Functions Based on The Multispecies Structure in Diamonds

Author:

Guo Hao1,Qin Yue1,Wang Zhibin1,Ma Yuxing1,Wen Huanfei1,Li Zhonghao1,Ma Zongmin1,Li Xin1,Tang Jun1,Liu Jun1

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement North University of China Taiyuan 030051 China

Abstract

AbstractThe multilevel encoding (MLE) scheme is an effective method for improving the anticounterfeiting encryption capabilities of physically unclonable functions (PUFs). However, owing to the correlation between encoding layers, the encoding capacity (EC) is difficult to improve by orders of magnitude. Herein, four noncorrelated structures in the diamond crystal structure (carbon–carbon single bond, defect luminescence structures, spin structures, and electron energy distribution structures) are considered for MLE. First, the microdiamonds containing nitrogen‐vacancy (NV) color centers are embedded into polydimethylsiloxane (PDMS) to fabricate PUFs. Using an optical imaging system, four codable images of four noncorrelated structures are read. The noncorrelation of the four‐level encoding structure is verified by calculating the Hamming distance (0.496 ± 0.02). The results show that EC exponentially improves to 24×10 000/(100 pixels)2. Furthermore, the encoding method based on the energy level does not depend on physical structure parameters, such as the size and position of the spin structure. Thus, it is protected from structural modeling attacks, resulting in high security. Moreover, PUF labels based on PDMS flexible substrates can be employed for various flexible applications. In the proposed scheme, the information is encrypted by a four‐level two‐dimensional (2D) barcode and decoded by self‐developed PUF authentication software. The proposed scheme presents a way for developing next‐generation PUFs with super‐high EC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3