Differentiating the Impacts of Cu2O Initial Low‐ and High‐Index Facets on Their Reconstruction and Catalytic Performance in Electrochemical CO2 Reduction Reaction

Author:

Han Chen1ORCID,Kundi Varun1,Ma Zhipeng1,Toe Cui Ying12,Kumar Priyank1,Tsounis Constantine1,Jiang Junjie1,Xi Shibo3,Han Zhaojun1,Lu Xunyu1,Amal Rose1ORCID,Pan Jian1ORCID

Affiliation:

1. School of Chemical Engineering The University of New South Wales NSW 2052 Australia

2. School of Engineering The University of Newcastle NSW 2308 Australia

3. Institute of Chemical & Engineering Sciences, Agency for Science Technology and Research Singapore 627833 Singapore

Abstract

AbstractOxide‐derived Cu catalysts from Cu2O microcrystals are capable of electrochemically converting CO2 into various value‐added chemicals. However, their structural transformation and associated preferred products remain unclear, requiring further investigation. Herein, Cu2O microcrystals with controllable low‐ and high‐index facets exposure are fabricated to differentiate the effects of initial exposed facets on their structural reconstruction and product selectivity in electrochemical CO2 reduction reaction. Combined in situ characterizations and theoretical investigation reveal the direct correlations of Cu2O reconstruction and product selectivity to its initial facet exposure. The Cu2O low‐index facet, being more stable with a high energy barrier on material reduction, tends to partially maintain its original crystalline structure and larger Cu2O particle size throughout the transformation. The derived flatter surface and limited Cu2O/Cu interfaces result in a favorable selectivity toward 2‐electron transfer products. The chemically active Cu2O high‐index facet (311) is energetically favorable to be reduced owing to the feasible protonation process, thus experiencing a drastic reconstruction with rich newly formed Cu nanoparticles and evolved fine Cu2O grains; Such a reconstruction creates uncoordinated Cu species and abundant boundaries, benefiting charge transfer and increasing the local pH by confining OH, thus leading to a high selectivity toward C2+ products.

Funder

Australian Synchrotron

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3