Ampere‐Level Current Density CO2 Reduction with High C2+ Selectivity on La(OH)3‐Modified Cu Catalysts

Author:

Hu Shuqi1,Chen Yumo1,Zhang Zhiyuan1,Li Shaohai1,Liu Heming1,Kang Xin1,Liu Jiarong1,Ge Shiyu1,Wang Jingwei1,Lv Wei1,Zeng Zhiyuan23,Zou Xiaolong1,Yu Qiangmin1,Liu Bilu1ORCID

Affiliation:

1. Shenzhen Geim Graphene Center Tsinghua‐Berkeley Shenzhen Institute & Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

2. Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong 999077 P. R. China

3. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China

Abstract

AbstractThe carbon dioxide reduction reaction (CO2RR) driven by electricity can transform CO2 into high‐value multi‐carbon (C2+) products. Copper (Cu)‐based catalysts are efficient but suffer from low C2+ selectivity at high current densities. Here La(OH)3 in Cu catalyst is introduced to modify its electronic structure towards efficient CO2RR to C2+ products at ampere‐level current densities. The La(OH)3/Cu catalyst has a remarkable C2+ Faradaic efficiency (FEC2+) of 71.2% which is 2.2 times that of the pure Cu catalyst at a current density of 1,000 mA cm−2 and keeps stable for 8 h. In situ spectroscopy and density functional theory calculations both show that La(OH)3 modifies the electronic structure of Cu. This modification favors *CO adsorption, subsequent hydrogenation, *CO─*COH coupling, and consequently increases C2+ selectivity. This work provides a guidance on facilitating C2+ product formation, and suppressing hydrogen evolution by La(OH)3 modification, enabling efficient CO2RR at ampere‐level current densities.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3