Lead‐Induced Microstrain in Synthesis and Manipulation of Porous Pyrochlore for Boosting Oxygen Evolution Reaction

Author:

Zhang Qingren12,Liu Tongtong12,Guo Hengyu12,Chen Yanan12,Di Yajing12,Zhang Zhengping12ORCID,Wang Feng12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractPyrochlore ruthenates are highlighted as candidates to replace iridium oxide as oxygen evolution reaction (OER) electrocatalyst, but their designable geometric configurations and composition modulations are hampered by the high‐temperature (≈1100 °C) and long‐time calcination (more than 12 h), which further decreases the technical and economic feasibility. In this work, an energy‐ and time‐saving approach is proposed to prepare pyrochlore yttrium ruthenate at a much lower calcination temperature (600 °C) and shorter calcination time (6 h) just by inducing A‐site substitutions of lead ions (YPRO). The local microstrain derived from Pb provides the surficial compression and extra driving force to overcome the strain energy of phase‐transition resistances and the obtained low‐temperature YPRO exhibits enriched pores, deficient geometries, shortened Ru─O bond, and enlarged Ru─O─Ru bond angle, which further modify the electronic structure, involving of the rearranged band alignment and the eliminated bandgap. The regulated morphologic, geometric, and electronic structures in YPRO synergically boost the electrocatalytic OER performance (4.8‐fold and 30.0‐fold enhancements compared with pyrochlore yttrium ruthenate and commercial iridium dioxide (IrO2), respectively) in universal pH conditions. This substitution‐induced strain engineering on phase transition should also be effective for other high‐temperature materials and trigger their diverse intriguing properties.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3