Affiliation:
1. School of Materials Science and Engineering Yancheng Institute of Technology Yancheng 224051 P. R. China
2. Jiangsu Provincial Key Laboratory of Eco‐Environmental Materials Yancheng Institute of Technology Yancheng 224051 P. R. China
Abstract
AbstractOptimization of components and micromorphology regulation are shown to be effective in boosting electromagnetic wave absorption (EMWA). One approach to achieve this enhancement is by utilizing the polarization effects of heterogeneous interfaces. Herein, NiSe2‐CoSe2@C@MoSe2 composites derived from NiCo‐MOF‐74 are fabricated via a facile selenization reaction and subsequent hydrothermal method. By varying the mass ratios of NiSe2‐CoSe2@C and MoSe2, a series of NiSe2‐CoSe2@C@MoSe2 composites with hierarchical flower‐like core–shell structures are obtained. The EMWA properties of the composites display a trend of initially increasing and then decreasing with the increasing content of MoSe2. Interestingly, when the mass ratio of NiSe2‐CoSe2@C and MoSe2 is 3:2, the minimum reflection loss (RL) value is −50.10 dB and an effective absorption bandwidth (RL< −10 dB) value can reach 4.80 GHz (13.20–18.00 GHz). The remarkable EMWA capability can be ascribed to the synergy effects of conductive loss, polarization loss, and suitable impedance matching. This work establishes a new pathway for the synthesis of transition metal dichalcogenides‐based composites, which hold great promise as high‐performance materials for EMWA applications.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献