Sequential Architecture Induced Strange Dielectric‐Magnetic Behaviors in Ferromagnetic Microwave Absorber

Author:

Pan Fei1,Ning Mingqiang2,Li Zhenhua3,Batalu Dan4,Guo Hongtao1,Wang Xiao1,Wu Hongjing5ORCID,Lu Wei1

Affiliation:

1. Shanghai Key Lab. of D&A for Metal‐Functional Materials School of Materials Science & Engineering Tongji University Shanghai 201804 P.R. China

2. CAS Key Laboratory of Magnetic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo Zhejiang 315201 P.R. China

3. School of Physics and Materials Engineering Dalian Minzu University Dalian 116600 P.R. China

4. Materials Science and Engineering Faculty Politehnica University of Bucharest Bucharest 060042 Romania

5. MOE Key Laboratory of Material Physics and Chemistry under Extraordinary School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710072 P.R. China

Abstract

AbstractThe high filler loading (FL) is a bottleneck in developing lightweight ferromagnetic microwave absorbers (MAs) for the actual applications. Sequential architecture design of MAs can induce strange physical behaviors due to the unique coupling‐enhancement effect between functional units, providing a vast potential for achieving high microwave absorption performance. However, the FLs of current sequential MAs fail to be designed on demand because the strange dielectric‐magnetic behaviors cannot be fulfilled. The influence of sequential architecture engineering on the macroscopic properties or microscopic loss mechanism still needs more exploration. Herein, based on four mesoscopic models (particles, chains, bundles, and fibers) of ferromagnetic functional units, a series of ferromagnetic MAs with different sequential architectures are prepared via a bottom‐up self‐assembly method. The fibrous samples exhibit the best microwave absorption performance (−51.3 dB, 4.12 GHz) at a breakthrough FL of 2 wt%, which is one order of magnitude less than other ferromagnetic MAs. Strange dielectric‐magnetic behaviors, including negative permittivity and heterodromous chiral vortex, occur due to functional units with lateral and fibrous configurations. Further, four special models are established to reveal the microwave attenuation evolutionary mechanism. This study clarifies the relationship between sequential architecture and strange dielectric‐magnetic behaviors, which provides new sight to understand microscopic electromagnetic loss mechanism.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3