Affiliation:
1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
2. Macao Institute of Materials Science and Engineering (MIMSE) MUST‐SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa Macau SAR 999078 China
Abstract
AbstractChemical doping is a powerful way to enhance the electrical performance of organic electronics. To avoid perturbing the ordered molecular packing of organic semiconducting hosts, molecular dopants are deposited on the surface of highly crystalline organic semiconductor thin films. However, such surface doping protocols not only limit charge‐transfer efficiency but also cause dopant diffusion problems, which significantly reduce charge carrier mobility and device stability. Here, an innovative anion bulk doping strategy is reported that allows effective doping of organic single‐crystalline films (OSCFs) without disrupting molecular ordering to improve the performance of organic field‐effect transistors (OFETs). This method is mediated by anion dopants and can be pictured as an effective charge transfer of dopants with organic semiconductors in liquid phase. The direct introduction of dopant anions overcomes limitations of partial charge transfer while avoiding interference from dopant aggregation with crystallization. Using this method, the average carrier mobility of the OSCFs is boosted by ≈2.5 times. Significantly, low‐voltage OFETs developed from anion‐doped OSCFs exhibit a near‐ideal subthreshold swing of 59.2 mV dec−1 and unparalleled mobility as high as 19.8 cm2 V−1 s−1 together with excellent stability. The concept of anion doping opens new avenues for improving the electrical performance of organic electronics.
Funder
Jiangsu Association for Science and Technology
Higher Education Discipline Innovation Project
Jiangsu Provincial Department of Science and Technology
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献