Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves

Author:

Ren Jianzhou1,Rong Bokun2,Zheng Lei1ORCID,Hu Yongxu23,Wang Yuchan1,Wang Zhongwu2,Chen Xiaosong2,Zhang Kailiang1,Li Liqiang2,Hu Wenping2

Affiliation:

1. Tianjin Key Laboratory of Film Electronic and Communication Devices School of Integrated Circuit Science and Engineering Tianjin University of Technology Tianjin 300384 China

2. Department of Chemistry Institute of Molecular Aggregation Science Key Laboratory of Organic Integrated Circuits Ministry of Education Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 China

3. Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

Abstract

AbstractThe key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. Herein, at a quantitative level, the origin of nonideal current–voltage (I–V) curves and possibly overestimated mobility in single‐crystal OFETs is revealed, including contact resistance (Rc), charge trapping, and scattering at interfaces of devices. Impressively, an efficient interface collaborative strategy, which consists of transferred “doped” electrodes with tunable contact “doping” localized regions at the source‐drain contacts and polymer‐modified SiO2 with suitable surface polarity (γsp) is further demonstrated that have great advantages in the construction of ideal high mobility devices. Also, an interesting double‐edged sword effect of γsp of dielectric on the ideality of OFETs is observed. The dielectric with a lower γsp can result in higher mobility, while too low γsp would degrade the device ideality due to significant effect of charge scattering. The findings not only provide new perspectives and strategies to construct ideal OFETs but also offer useful guidance to correctly evaluate organic semiconductor materials.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3