Gradient‐Tuned VO4 Vacancies in BiVO4 Photoanode for Boosting Bulk Hole Transport and Oxygen Evolution Reaction Performance

Author:

Pei Hao1,Peng Lingling1,Jiang Zhuo2ORCID,Zhang Yuexing3,Li Renjie1,Peng Tianyou1ORCID

Affiliation:

1. College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Wuhan University Wuhan 430072 China

2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China

3. College of Chemistry and Chemical Engineering Dezhou University Dezhou 253023 China

Abstract

AbstractAlthough bismuth vanadate (BiVO4) photoanode has been widely used, the solar‐driven oxygen evolution reaction (OER) performance is constrained due to the substantial bulk recombination and poor mobility of charge carriers. Herein, a facile solvothermal post‐treatment approach that employs N,N‐dimethylformamide (DMF) is developed to induce a VO4 vacancy gradient from bulk to surface of BiVO4 film, which not only improves the charge diffusion but also establishes an advantageous upward band gradient to promote the bulk hole transport. Under Air Mass 1.5 Global (AM1.5G) simulated solar illumination, the optimized BiVO4 photoanode with a VO4 vacancy gradient (denoted as B(VO)1‐δ) exhibits excellent OER performance with a charge separation efficiency of 74.4% at 1.23 V versus reversible hydrogen electrode (RHE) and incident‐photon‐to‐current conversion efficiency of 30.7% at 445 nm, 1.2 and 1.4 times higher than that of the pristine BiVO4, respectively. After loading nickel‐iron hydroxyl oxide (NiFeOOH) as a cocatalyst, the photocurrent density of B(VO)1‐δ escalates to 5.92 mA cm−2 in a hole scavenger (Na2SO3) solution and 5.07 mA cm−2 in a potassium borate buffer solution at 1.23 V versus RHE, far superior to the pristine BiVO4. This work highlights that the gradient‐tuned VO4 vacancies can effectively modulate the bulk band structure and charge transfer in BiVO4 photoanode, providing a new strategy for boosting solar water splitting performance.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of Hubei Province

Science and Technology Planning Project of Shenzen Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3