Effective Corrosion‐Resistant Single‐Atom Alloy Catalyst on HfO2‐Passivated BiVO4 Photoanode for Durable (≈800 h) Solar Water Oxidation

Author:

Arunachalam Maheswari1,Lee Kug‐Seung2,Zhu Kai3ORCID,Kang Soon Hyung1

Affiliation:

1. Department of Chemistry Education and Optoelectronic Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea

2. Pohang Accelerator Laboratory Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

3. Chemistry and Nanoscience Center National Renewable Energy Laboratory Golden CO 80401 USA

Abstract

AbstractGreen hydrogen (H2) production from solar water splitting necessitates photoelectrodes with superior photoelectrochemical (PEC) activity and durability. However, surface defects and photocorrosion instability—especially at high potentials—limit PEC performance and stability. Herein, the prototypical bismuth vanadate (BiVO4) photoanode is used to demonstrate a holistic approach to improve photocurrent density and long‐term stability. In this approach, high surface‐area nanostructuring of BiVO4 is combined with barium (Ba) doping with semi‐crystalline hafnium oxide (HfO2) surface passivation and single‐atom nickel platinum (NiPt) catalysts. The introduction of Ba2+ ions into BiVO4 increases the concentration of conductive V4+ ions or the ratio of V4+ ions to oxygen vacancies, avoiding V5+ dissolution during water oxidation. The semi‐crystalline HfO2, which serves as a passivation layer, prevents BiVO4 photocorrosion by suppressing harmful chemical reactions when holes are transferred to the electrolyte. The synergistic use of isolated single‐atom and Ni‐Pt coordination improves charge transfer at the photoanode/electrolyte interface, leading to enhanced PEC kinetics and stability. As a result, a photoelectrode is demonstrated with ≈6.5 mA cm−2 at 1.23 V versus a reversible hydrogen electrode (RHE) and continuous operation for 800 h with a negligible degradation rate. This work provides a promising approach to improve photoanodes for PEC H2 production.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3