Affiliation:
1. Department of Mechanical Engineering Chosun University 309 Pilmun‐daero, Dong‐gu Gwangju 61452 South Korea
2. Korea Institute of Medical Microrobotics (KIMIRo) 43‐26 Cheomdangwagi‐ro, Buk‐gu Gwangju 61011 South Korea
3. School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
Abstract
AbstractAlthough many medical microrobots have been developed for treating diseases, their designs have not been optimized for disease environments and their functionality and capabilities have been primarily demonstrated in vitro. In addition, the imaging of microrobots within blood vessels in deep tissues remains a challenge. Herein, a chitosan‐based biodegradable microrobot with optimized structural design and X‐ray imaging for targeted vessel chemoembolization is reported. The design of the microrobot takes into account its magnetizability and stackability in blood vessels. The microrobot is prepared through laser micromachining of a porous chitosan sheet, attachment of nanoparticles, and filling the pores with gelatin. The optimized microrobot is biocompatible, biodegradable, thrombogenic, magnetically targetable, and drug‐loadable, as demonstrated both in vitro and in a blood vessel phantom. X‐ray imaging of the gold nanoparticle‐attached microrobots compares well with using commercial iodinated contrast materials, thereby demonstrating their real‐time long‐term X‐ray imaging capability. The in vivo real‐time imaging and targeted vessel embolization of the microrobot are demonstrated in rat liver. The proposed microrobot overcomes the limitations of embolic microbeads currently used in targeted vessel chemoembolization (i.e., targeted vessel blocking and X‐ray visibility) and expands the capability of microrobots in advanced platforms for treating human diseases.
Funder
Ministry of Food and Drug Safety
National Research Foundation of Korea
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献