Affiliation:
1. The Second School of Clinical Medicine Southern Medical University Guangzhou 510515 China
2. Department of Ultrasound Institute of Ultrasound in Musculoskeletal Sports Medicine The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou 510317 China
3. MOE Key Laboratory of Tumor Molecular Biology Department of Chemistry Jinan University Guangzhou 510632 China
4. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
Abstract
AbstractAbnormal levels of reactive oxygen species (ROS) and the hypoxic microenvironment within bone defects are important factors that impede bone repair processes. Herein, an innovative ultrasound‐modulatable hydrogel platform with selenoprotein‐mediated antioxidant effects to promote bone injury repair is presented. This hydrogel platform encapsulates oxygen‐enriched selene‐incorporated thin‐shell silicon within methacrylate gelatin (O2‐PSSG). The resultant construct orchestrates the modulation of the bone‐defect microenvironment, thereby expediting the course of bone regeneration. Ultrasound (US) is used to regulate the pore size of the hydrogel to release selenium‐containing nanoparticles and promote the in situ synthesis of efficient intracellular selenoproteins and hydrogen peroxide consumption. As expected, O2‐PSSG rapidly releases selenocystine ([Sec]2) under US control to scavenge reactive oxygen species and maintain the homeostasis of bone marrow mesenchymal stem cells (BMSCs). Over time, the action of the system by selenoprotein increases the activation of Wnt/β‐catenin pathways and promotes the differentiation of BMSCs. Consequently, O2‐PSSG potentiates the antioxidant proficiency of BMSCs both in vitro and in vivo, alleviates hypoxic environments, promotes osteogenic differentiation, and expedites cranial bone repair in rat models. In summary, this study suggests that the designed and constructed US‐responsive antioxidant hydrogel is a promising prospective strategy for addressing bone defects and fostering bone regeneration.
Funder
National Natural Science Foundation of China
K. C. Wong Education Foundation
Natural Science Foundation of Guangdong Province
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献