Affiliation:
1. Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education) Chongqing University Chongqing 400044 P. R. China
2. Key Lab of Artificial Micro‐ and Nano‐Structures of Ministry of Education of China School of Physics and Technology Wuhan University Wuhan 430072 Hubei P. R. China
3. College of Information Science and Engineering Yanshan University Qinhuangdao 066004 P. R. China
Abstract
AbstractLead‐free metal halides have recently received sustained attention because of their nontoxicity, low‐cost, as well as excellent stability and optoelectronic properties. However, most of the reported lead‐free metal halides are synthesized via slow solution‐processing at high temperature in toxic solvents, which may impede their commercial applications. Here, a solvent‐free strategy is proposed to synthesize inorganic rubidium copper halides (Rb2CuX3, X = Cl, Br) at room temperature, which exhibit efficient violet emission dominated by a self‐trapped excitons (STEs) mechanism and attractive stabilities against ultraviolet illumination and heating. Thus, Rb2CuX3 powders are employed as emitters and scintillators applied in wireless light communication and X‐ray imaging technologies. Under orthogonal frequency division multiplexing modulation, emitters demonstrate a broad −3 dB bandwidth of 26.3 MHz and a high received data rate of 205.1 Mbps. Additionally, flexible scintillation films based on as‐prepared powders are fabricated and show outstanding X‐ray scintillation properties, including a high spatial resolution of 18.1 lp mm−1 and a low detection limit of 104 nGyair s−1, as well as promising imaging performance for irregular objects. These results suggest large‐scale production of nontoxic Rb2CuX3 and their potential commercialization in fields of high‐speed light communication and X‐ray radiography.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献