Oxygen Incorporated MoS2 for Rectification‐Mediated Resistive Switching and Artificial Neural Network

Author:

Xiong Xuya1,Wu Fan2,Ouyang Yi1,Liu Yanming2,Wang Zegao13,Tian He2,Dong Mingdong1ORCID

Affiliation:

1. Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus 8000 Denmark

2. School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist) Tsinghua University Beijing 100084 P. R. China

3. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

Abstract

AbstractMolybdenum disulfide (MoS2) based memristor presents intriguing chance for the implementation bio‐inspired artificial synapse and neural interactions. However, the electrical properties of intrinsic MoS2 single‐crystal film suffer from inevitable lattice defects or structure vacancies as well as restraining reliable resistive switching mechanism. Here, a fundamental study on tunable p‐type doping in MoS2 film by controllable oxygen passivation is reported. In situ KPFM measurements reveal a near‐linear increase in Fermi‐level energy. The TiN/O‐MoS2 memristor exhibits surprising bipolar switching feature, revealing an interesting transition between rectification‐mediated and conduction‐mediated characteristics by means of controllable surficial oxygen kinetics. The resistive window demonstrates nearly symmetric SET and RESET domain and capability to analog programming conductance. Moreover, based on the MoS2 memristor, the accuracy up to 94% for MINST recognition ensures the implementation of neural network and LTP/LTD behaviors. This as‐prepared memristor is capable of mimicking synaptic feature through regulated resistive mechanics and electrode contact interaction, which can be an up‐and‐coming strategy for bio‐realistic electronics.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Institute of Microelectronics

Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3