Diamond‐Based Supercapacitors with Ultrahigh Cyclic Stability Through Dual‐Phase MnO2‐Graphitic Transformation Induced by High‐Dose Mn‐Ion Implantation

Author:

Deshmukh Sujit1ORCID,Kunuku Srinivasu1,Jakobczyk Pawel1,Olejnik Adrian1,Chen Chien‐Hsu2,Niu Huan2,Yang Bing3,Yang Nianjun45,Bogdanowicz Robert1ORCID

Affiliation:

1. Department of Metrology and Optoelectronics Faculty of Electronics Telecommunications and Informatics Gdansk University of Technology 11/12 G. Narutowicza Str. 80‐233 Gdansk Poland

2. Accelerator Laboratory Nuclear Science and Technology Development Center National Tsing Hua University Hsinchu 300044 Taiwan

3. Shenyang National Laboratory for Materials Science Institute of Metal Research (IMR) Chinese Academy of Sciences (CAS) No. 72 Wenhua Road Shenyang 110016 China

4. Department of Chemistry Hasselt University Agoralaan‐Gebouw F 3590 Diepenbeek Belgium

5. Institute of Materials Research Hasselt University Wetenschapspark 1 3590 Diepenbeek Belgium

Abstract

AbstractWhile occasionally being able to charge and discharge more quickly than batteries, carbon‐based electrochemical supercapacitors (SCs) are nevertheless limited by their simplicity of processing, adjustable porosity, and lack of electrocatalytic active sites for a range of redox reactions. Even SCs based on the most stable form of carbon (sp3 carbon/diamond) have a poor energy density and inadequate capacitance retention during long charge/discharge cycles, limiting their practical applications. To construct a SC with improved cycling stability/energy density Mn‐ion implanted (high‐dose; 1015–1017 ions cm−2) boron doped diamond (Mn‐BDD) films have been prepared. Mn ion implantation and post‐annealing process results in an in situ graphitization (sp2 phase) and growth of MnO2 phase with roundish granular grains on the BDD film, which is favorable for ion transport. The dual advantage of both sp2 (graphitic phase) and sp3 (diamond phase) carbons with an additional pseudocapacitor (MnO2) component provides a unique and critical function in achieving high‐energy SC performance. The capacitance of Mn‐BDD electrode in a redox active aqueous electrolyte (0.05 M Fe(CN)63‐/4− + 1 M Na2SO4) is as high as 51 mF cm−2 at 10 mV s−1 with exceptional cyclic stability (≈100% capacitance even after 10 000 charge/discharge cycles) placing it among the best‐performing SCs. Furthermore, the ultrahigh capacitance retention (≈80% retention after 88 000 charge/discharge cycles) in a gel electrolyte containing a two‐electrode configuration shows a promising prospect for high‐rate electrochemical capacitive energy storage applications.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Narodowa Agencja Wymiany Akademickiej

Narodowe Centrum Nauki

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3