Affiliation:
1. State Key Laboratory of Ocean Engineering Department of Mechanics School of Naval Architecture Ocean & Civil Engineering Shanghai Jiao Tong University Shanghai 200240 China
2. State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China
Abstract
AbstractThe mechanoreception system in bionic micro air vehicles, akin to insect sensory neurons, handles internal and external stimulus information. However, current onboard mechanoreception methods add weight and necessitate additional power. Employing the embodied energy design paradigm, a lightweight intelligent membranous wing is proposed, mimicking the scarab beetle's hindwing morphology and kinematics. This wing serves multiple functions, including aerodynamic load‐bearing, flight piezo‐mechanoreception, and power supply. The beetle's semi‐tubular costa structure is replicated, featuring a compliant leading edge for upstroke aerodynamic load resistance. Inspired by beetle hindwing veins and membranes, the bionic wing with three membranous fields: anal, medial, and apical, using heat lamination of multilayer materials is fabricated. The bionic wing's aerodynamic performance closely mirrors that of a real beetle hindwing, enabling various flight maneuvers and validating its real‐flight potential. As a piezo‐mechanoreception receptor for micro air vehicles, the bionic intelligent wing senses flapping frequency, wing deformations, and collisions through voltage signals from piezoelectric materials in the three membranous fields. Energy harvested from flapping‐wing motion powers onboard light intensity and ultraviolet sensors for mobile 3D environmental monitoring. This integration of aerodynamics, mechanoreception, and power supply via embodied flapping energy offers a novel approach for designing future intelligent flapping‐wing micro air vehicles.
Funder
Natural Science Foundation of Shanghai Municipality
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献