Synaptic Characteristics and Vector‐Matrix Multiplication Operation in Highly Uniform and Cost‐Effective Four‐Layer Vertical RRAM Array

Author:

Kim Jihyung1,Lee Subaek1,Kim Sungjoon2,Yang Seyoung1,Lee Jung‐Kyu1,Kim Tae‐Hyeon3,Ismail Muhammad1,Mahata Chandreswar1,Kim Yoon4,Choi Woo Young2,Kim Sungjun1ORCID

Affiliation:

1. Division of Electronics and Electrical Engineering Dongguk University Seoul 04620 Republic of Korea

2. Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research Center (ISRC) Seoul National University Seoul 08826 Republic of Korea

3. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332 USA

4. School of Electrical and Computer Engineering University of Seoul Seoul 02504 Republic of Korea

Abstract

AbstractThis study implements a highly uniform 3D vertically stack resistive random‐access memory (VRRAM) with a four‐layer contact hole structure. The fabrication process of a four‐layer VRRAM is demonstrated, and its physical and electrical properties are thoroughly examined. X‐ray photoelectron spectroscopy and transmission electron microscopy are employed to analyze the chemical distribution and physical structure of the VRRAM device. Multilevel capability, reliable endurance (>104 cycles), and retention (104 s) are successfully obtained. Synaptic memory plasticity, such as spike time‐dependent plasticity, spike rate‐dependent plasticity, excitatory post‐synaptic current, paired‐pulse facilitation, and long‐term potentiation and depression is presented. Finally, the vector‐matrix multiplication (VMM) operation is conducted on a 4 × 12 VRRAM array, according to the low resistance state ratio. It is ascertained that the accuracy drop, which can occur due to VMM error, can be limited to a decrease of less than 0.44% point. Utilizing the high‐density, multilevel, and biological characteristics of VRRAM, it is possible to implement high‐performance neuromorphic systems that require densely integrated synaptic devices.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3